Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 869
Filter
1.
Transgenic Res ; 33(1-2): 67-74, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573428

ABSTRACT

Genome editing via CRISPR/Cas has enabled targeted genetic modifications in various species, including plants. The requirement for specific protospacer-adjacent motifs (PAMs) near the target gene, as seen with Cas nucleases like SpCas9, limits its application. PAMless SpCas9 variants, designed with a relaxed PAM requirement, have widened targeting options. However, these so-call PAMless SpCas9 still show variation of editing efficiency depending on the PAM and their efficiency lags behind the native SpCas9. Here we assess the potential of a PAMless SpCas9 variant for genome editing in the model plant Physcomitrium patens. For this purpose, we developed a SpRYCas9i variant, where expression was optimized, and tested its editing efficiency using the APT as a reporter gene. We show that the near PAMless SpRYCas9i effectively recognizes specific PAMs in P. patens that are not or poorly recognized by the native SpCas9. Pattern of mutations found using the SpRYCas9i are similar to the ones found with the SpCas9 and we could not detect off-target activity for the sgRNAs tested in this study. These findings contribute to advancing versatile genome editing techniques in plants.


Subject(s)
Bryopsida , Gene Editing , Gene Editing/methods , CRISPR-Cas Systems/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , RNA, Guide, CRISPR-Cas Systems , Mutation , Bryopsida/genetics , Genome, Plant/genetics
2.
New Phytol ; 242(5): 1996-2010, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38571393

ABSTRACT

The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.


Subject(s)
Bryopsida , Ethylenes , Gene Expression Regulation, Plant , Indoleacetic Acids , Plant Proteins , Ethylenes/metabolism , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Bryopsida/growth & development , Bryopsida/genetics , Bryopsida/drug effects , Bryopsida/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Germ Cells, Plant/metabolism , Germ Cells, Plant/growth & development , Germ Cells, Plant/drug effects , Mutation/genetics
3.
Microb Ecol ; 87(1): 49, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427046

ABSTRACT

Moss-cyanobacteria symbioses were proposed to be based on nutrient exchange, with hosts providing C and S while bacteria provide N, but we still lack understanding of the underlying molecular mechanisms of their interactions. We investigated how contact between the ubiquitous moss Hylocomium splendens and its cyanobiont affects nutrient-related gene expression of both partners. We isolated a cyanobacterium from H. splendens and co-incubated it with washed H. splendens shoots. Cyanobacterium and moss were also incubated separately. After 1 week, we performed acetylene reduction assays to estimate N2 fixation and RNAseq to evaluate metatranscriptomes. Genes related to N2 fixation and the biosynthesis of several amino acids were up-regulated in the cyanobiont when hosted by the moss. However, S-uptake and the biosynthesis of the S-containing amino acids methionine and cysteine were down-regulated in the cyanobiont while the degradation of selenocysteine was up-regulated. In contrast, the number of differentially expressed genes in the moss was much lower, and almost no transcripts related to nutrient metabolism were affected. It is possible that, at least during the early stage of this symbiosis, the cyanobiont receives few if any nutrients from the host in return for N, suggesting that moss-cyanobacteria symbioses encompass relationships that are more plastic than a constant mutualist flow of nutrients.


Subject(s)
Bryophyta , Bryopsida , Cyanobacteria , Symbiosis , Nitrogen Fixation , Bryopsida/genetics , Bryopsida/metabolism , Bryopsida/microbiology , Cyanobacteria/metabolism , Amino Acids/metabolism
4.
New Phytol ; 242(5): 2251-2269, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38501480

ABSTRACT

The plant cuticle is a hydrophobic barrier, which seals the epidermal surface of most aboveground organs. While the cuticle biosynthesis of angiosperms has been intensively studied, knowledge about its existence and composition in nonvascular plants is scarce. Here, we identified and characterized homologs of Arabidopsis thaliana fatty acyl-CoA reductase (FAR) ECERIFERUM 4 (AtCER4) and bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase 1 (AtWSD1) in the liverwort Marchantia polymorpha (MpFAR2 and MpWSD1) and the moss Physcomitrium patens (PpFAR2A, PpFAR2B, and PpWSD1). Although bryophyte harbor similar compound classes as described for angiosperm cuticles, their biosynthesis may not be fully conserved between the bryophytes M. polymorpha and P. patens or between these bryophytes and angiosperms. While PpFAR2A and PpFAR2B contribute to the production of primary alcohols in P. patens, loss of MpFAR2 function does not affect the wax profile of M. polymorpha. By contrast, MpWSD1 acts as the major wax ester-producing enzyme in M. polymorpha, whereas mutations of PpWSD1 do not affect the wax ester levels of P. patens. Our results suggest that the biosynthetic enzymes involved in primary alcohol and wax ester formation in land plants have either evolved multiple times independently or undergone pronounced radiation followed by the formation of lineage-specific toolkits.


Subject(s)
Waxes , Waxes/metabolism , Alcohols/metabolism , Phylogeny , Marchantia/genetics , Marchantia/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Bryopsida/genetics , Bryopsida/metabolism , Bryophyta/genetics , Bryophyta/metabolism , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Biosynthetic Pathways/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Acyltransferases/metabolism , Acyltransferases/genetics , Biological Evolution , Arabidopsis/genetics , Arabidopsis/metabolism , Mutation/genetics
5.
Plant Cell Rep ; 43(3): 63, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38340191

ABSTRACT

KEY MESSAGE: To establish a sterile culture system and protoplast regeneration system for Bryum argenteum, and to establish and apply CRISPR/Cas9 system in Bryum argenteum. Bryum argenteum is a fascinating, cosmopolitan, and versatile moss species that thrives in various disturbed environments. Because of its comprehensive tolerance to the desiccation, high UV and extreme temperatures, it is emerging as a model moss for studying the molecular mechanisms underlying plant responses to abiotic stresses. However, the lack of basic tools such as gene transformation and targeted genome modification has hindered the understanding of the molecular mechanisms underlying the survival of B. argenteum in different environments. Here, we reported the protonema of B. argenteum can survive up to 95.4% water loss. In addition, the genome size of B. argenteum is approximately 313 Mb by kmer analysis, which is smaller than the previously reported 700 Mb. We also developed a simple method for protonema induction and an efficient protoplast isolation and regeneration protocol for B. argenteum. Furthermore, we established a PEG-mediated protoplast transient transfection and stable transformation system for B. argenteum. Two homologues of ABI3(ABA-INSENSITIVE 3) gene were successfully cloned from B. argenteum. To further investigate the function of the ABI3 gene in B. argenteum, we used the CRISPR/Cas9 genetic editing system to target the BaABI3A and BaABI3B gene in B. argenteum protoplasts. This resulted in mutagenesis at the target in about 2-5% of the regenerated plants. The isolated abi3a and abi3b mutants exhibited increased sensitivity to desiccation, suggesting that BaABI3A and BaABI3B play redundant roles in desiccation stress. Overall, our results provide a rapid and simple approach for molecular genetics in B. argenteum. This study contributes to a better understanding of the molecular mechanisms of plant adaptation to extreme environmental.


Subject(s)
Bryophyta , Bryopsida , Gene Editing , Bryopsida/genetics , Bryophyta/genetics , Stress, Physiological/genetics , Transformation, Genetic , CRISPR-Cas Systems/genetics , Protoplasts
6.
Plant Physiol Biochem ; 208: 108456, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38417308

ABSTRACT

Bryophytes, known as poikilohydric plants, possess vegetative desiccation-tolerant (DT) ability to withstand water deficit stress. Consequently, they offer valuable genetic resources for enhancing resistance to water scarcity stress. In this research, we examined the physiological, phytohormonal, and transcriptomic changes in DT mosses Calohypnum plumiforme from two populations, with and without desiccation treatment. Comparative analysis revealed population differentiation at physiological, gene sequence, and expression levels. Under desiccation stress, the activities of superoxide dismutase (SOD) and peroxidase (POD) showed significant increases, along with elevation of soluble sugars and proteins, consistent with the transcriptome changes. Notable activation of the bypass pathway of JA biosynthesis suggested their roles in compensating for JA accumulation. Furthermore, our analysis revealed significant correlations among phytohormones and DEGs in their respective signaling pathway, indicating potential complex interplays of hormones in C plumiforme. Protein phosphatase 2C (PP2C) in the abscisic acid signaling pathway emerged as the pivotal hub in the phytohormone crosstalk regulation network. Overall, this study was one of the first comprehensive transcriptome analyses of moss C. plumiforme under slow desiccation rates, expanding our knowledge of bryophyte transcriptomes and shedding light on the gene regulatory network involved in response to desiccation, as well as the evolutionary processes of local adaptation across moss populations.


Subject(s)
Bryophyta , Bryopsida , Transcriptome/genetics , Droughts , Gene Expression Profiling , Plant Growth Regulators/metabolism , Bryopsida/genetics , Bryophyta/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Plant
7.
Science ; 383(6682): 471, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38301003

ABSTRACT

Scientists make partially synthetic version of moss chromosome, aiming to harness plant for industry.


Subject(s)
Bryopsida , Chromosomes, Artificial , Genome, Plant , Bryopsida/genetics , Industry
8.
Nucleic Acids Res ; 52(8): 4276-4294, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38366760

ABSTRACT

The bZIP60, XBP1 and HAC1 mRNAs encode transcription factors that mediate the unfolded protein response (UPR) in plants, animals and yeasts, respectively. Upon UPR, these mRNAs undergo unconventional cytoplasmic splicing on the endoplasmic reticulum (ER) to produce active transcription factors. Although cytoplasmic splicing is conserved, the ER targeting mechanism differs between XBP1 and HAC1. The ER targeting of HAC1 mRNA occurs before translation, whereas that of XBP1 mRNA involves a ribosome-nascent chain complex that is stalled when a hydrophobic peptide emerges from the ribosome; the corresponding mechanism is unknown for bZIP60. Here, we analyzed ribosome stalling on bZIP60 orthologs of plants. Using a cell-free translation system, we detected nascent peptide-mediated ribosome stalling during the translation elongation of the mRNAs of Arabidopsis, rice and Physcomitrium (moss) orthologs, and the termination-step stalling in the Selaginella (lycopod) ortholog, all of which occurred ∼50 amino acids downstream of a hydrophobic region. Transfection experiments showed that ribosome stalling contributes to cytoplasmic splicing in bZIP60u orthologs of Arabidopsis and Selaginella. In contrast, ribosome stalling was undetectable for liverwort, Klebsormidium (basal land plant), and green algae orthologs. This study highlights the evolutionary diversity of ribosome stalling and its contribution to ER targeting in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic-Leucine Zipper Transcription Factors , Phylogeny , RNA, Messenger , Ribosomes , Unfolded Protein Response , Arabidopsis/genetics , Arabidopsis/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ribosomes/metabolism , Ribosomes/genetics , Unfolded Protein Response/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Oryza/genetics , Oryza/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/genetics , RNA Splicing , Bryopsida/genetics , Bryopsida/metabolism , Protein Biosynthesis
9.
Nat Plants ; 10(2): 228-239, 2024 02.
Article in English | MEDLINE | ID: mdl-38278952

ABSTRACT

Rapid advances in DNA synthesis techniques have enabled the assembly and engineering of viral and microbial genomes, presenting new opportunities for synthetic genomics in multicellular eukaryotic organisms. These organisms, characterized by larger genomes, abundant transposons and extensive epigenetic regulation, pose unique challenges. Here we report the in vivo assembly of chromosomal fragments in the moss Physcomitrium patens, producing phenotypically virtually wild-type lines in which one-third of the coding region of a chromosomal arm is replaced by redesigned, chemically synthesized fragments. By eliminating 55.8% of a 155 kb endogenous chromosomal region, we substantially simplified the genome without discernible phenotypic effects, implying that many transposable elements may minimally impact growth. We also introduced other sequence modifications, such as PCRTag incorporation, gene locus swapping and stop codon substitution. Despite these substantial changes, the complex epigenetic landscape was normally established, albeit with some three-dimensional conformation alterations. The synthesis of a partial multicellular eukaryotic chromosome arm lays the foundation for the synthetic moss genome project (SynMoss) and paves the way for genome synthesis in multicellular organisms.


Subject(s)
Bryopsida , Epigenesis, Genetic , Chromosomes , Genomics/methods , Bryopsida/genetics , DNA Transposable Elements
10.
Plant J ; 118(2): 304-323, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38265362

ABSTRACT

The model moss species Physcomitrium patens has long been used for studying divergence of land plants spanning from bryophytes to angiosperms. In addition to its phylogenetic relationships, the limited number of differential tissues, and comparable morphology to the earliest embryophytes provide a system to represent basic plant architecture. Based on plant-fungal interactions today, it is hypothesized these kingdoms have a long-standing relationship, predating plant terrestrialization. Mortierellaceae have origins diverging from other land fungi paralleling bryophyte divergence, are related to arbuscular mycorrhizal fungi but are free-living, observed to interact with plants, and can be found in moss microbiomes globally. Due to their parallel origins, we assess here how two Mortierellaceae species, Linnemannia elongata and Benniella erionia, interact with P. patens in coculture. We also assess how Mollicute-related or Burkholderia-related endobacterial symbionts (MRE or BRE) of these fungi impact plant response. Coculture interactions are investigated through high-throughput phenomics, microscopy, RNA-sequencing, differential expression profiling, gene ontology enrichment, and comparisons among 99 other P. patens transcriptomic studies. Here we present new high-throughput approaches for measuring P. patens growth, identify novel expression of over 800 genes that are not expressed on traditional agar media, identify subtle interactions between P. patens and Mortierellaceae, and observe changes to plant-fungal interactions dependent on whether MRE or BRE are present. Our study provides insights into how plants and fungal partners may have interacted based on their communications observed today as well as identifying L. elongata and B. erionia as modern fungal endophytes with P. patens.


Subject(s)
Bryophyta , Bryopsida , Mycorrhizae , Phylogeny , Endophytes/metabolism , Multilevel Analysis , Plant Proteins/metabolism , Bryopsida/genetics , Bryopsida/metabolism , Bryophyta/genetics , Bryophyta/metabolism , Mycorrhizae/metabolism
11.
Plant Physiol Biochem ; 207: 108335, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38190765

ABSTRACT

Alfalfa (Medicago sativa L.), a perennial forage plant, is a rich source of nutrients such as vitamins, minerals, and proteins. Salt stress, however, impedes its growth. The plant-specific transcription factor abscisic acid insensitive 3 (ABI3) has a critical contribution to the control of abscisic acid (ABA) signaling pathway and abiotic stress response. The gene ScABI3 from Syntrichia caninervis, a moss species tolerant to desiccation, could be considered a potential candidate gene to modify alfalfa's nutritional and growth aspects. However, it remains unclear how ScABI3 affects the salt stress response of transgenic alfalfa. Therefore, we elucidated the role and molecular mechanism of ScABI3 from S. caninervis as an ABA signaling factor in transgenic alfalfa. Our findings demonstrate that ScABI3 overexpression in transgenic alfalfa improves salt tolerance by promoting relative water content, antioxidant enzyme activity, and photosynthetic parameters. Furthermore, the key genes of plant hormone signaling and the classical salt tolerance pathway were activated in ScABI3 transgenic lines under salt stress. Based on these results, ScABI3 could be considered a potentially critical candidate gene to alleviate salt stress in alfalfa. The present study provides valuable insights for developing transgenic crop breeding strategies for saline-alkaline soils.


Subject(s)
Bryopsida , Salt Tolerance , Salt Tolerance/genetics , Plants, Genetically Modified/genetics , Medicago sativa/metabolism , Abscisic Acid/metabolism , Plant Breeding , Bryopsida/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Plant
12.
Plant Signal Behav ; 19(1): 2306790, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38270144

ABSTRACT

Plant-specific Rho-type GTPases (ROPs) are master regulators of cell polarity and development. Over the past 30 years, their localization and dynamics have been largely examined with fluorescent proteins fused at the amino terminus without investigating their impact on protein function. The moss Physcomitrium patens genome encodes four rop genes. In this study, we introduce a fluorescent tag at the endogenous amino terminus of ROP4 in wild-type and rop1,2,3 triple mutant via homologous recombination and demonstrate that the fluorescent tag severely impairs ROP4 function and inhibits its localization on the plasma membrane. This phenotype is exacerbated in mutants lacking ROP-related GTPase-activating proteins. By comparing the localization of nonfunctional and functional ROP4 fusion reporters, we provide insight into the mechanism that governs the membrane association of ROPs.


Subject(s)
Bryophyta , Bryopsida , Cell Membrane , Bryopsida/genetics , Cell Polarity , Homologous Recombination
13.
Plant Cell Rep ; 43(2): 43, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38246952

ABSTRACT

KEY MESSAGE: Characterization of Physcomitrella 3'UTRs across different promoters yields endogenous single and double terminators for usage in molecular pharming. The production of recombinant proteins for health applications accounts for a large share of the biopharmaceutical market. While many drugs are produced in microbial and mammalian systems, plants gain more attention as expression hosts to produce eukaryotic proteins. In particular, the good manufacturing practice (GMP)-compliant moss Physcomitrella (Physcomitrium patens) has outstanding features, such as excellent genetic amenability, reproducible bioreactor cultivation, and humanized protein glycosylation patterns. In this study, we selected and characterized novel terminators for their effects on heterologous gene expression. The Physcomitrella genome contains 53,346 unique 3'UTRs (untranslated regions) of which 7964 transcripts contain at least one intron. Over 91% of 3'UTRs exhibit more than one polyadenylation site, indicating the prevalence of alternative polyadenylation in Physcomitrella. Out of all 3'UTRs, 14 terminator candidates were selected and characterized via transient Dual-Luciferase assays, yielding a collection of endogenous terminators performing equally high as established heterologous terminators CaMV35S, AtHSP90, and NOS. High performing candidates were selected for testing as double terminators which impact reporter levels, dependent on terminator identity and positioning. Testing of 3'UTRs among the different promoters NOS, CaMV35S, and PpActin5 showed an increase of more than 1000-fold between promoters PpActin5 and NOS, whereas terminators increased reporter levels by less than tenfold, demonstrating the stronger effect promoters play as compared to terminators. Among selected terminator attributes, the number of polyadenylation sites as well as polyadenylation signals were found to influence terminator performance the most. Our results improve the biotechnology platform Physcomitrella and further our understanding of how terminators influence gene expression in plants in general.


Subject(s)
Bryophyta , Bryopsida , Animals , Bryopsida/genetics , 3' Untranslated Regions , Molecular Farming , Gene Expression , Mammals
14.
Plant Cell ; 36(5): 1655-1672, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38242840

ABSTRACT

SUPPRESSOR OF MAX2 (SMAX)1-LIKE (SMXL) proteins are a plant-specific clade of type I HSP100/Clp-ATPases. SMXL genes are present in virtually all land plant genomes. However, they have mainly been studied in angiosperms. In Arabidopsis (Arabidopsis thaliana), 3 functional SMXL subclades have been identified: SMAX1/SMXL2, SMXL345, and SMXL678. Of these, 2 subclades ensure endogenous phytohormone signal transduction. SMAX1/SMXL2 proteins are involved in KAI2 ligand (KL) signaling, while SMXL678 proteins are involved in strigolactone (SL) signaling. Many questions remain regarding the mode of action of these proteins, as well as their ancestral roles. We addressed these questions by investigating the functions of the 4 SMXL genes in the moss Physcomitrium patens. We demonstrate that PpSMXL proteins are involved in the conserved ancestral MAX2-dependent KL signaling pathway and negatively regulate growth. However, PpSMXL proteins expressed in Arabidopsis cannot replace SMAX1 or SMXL2 function in KL signaling, whereas they can functionally replace SMXL4 and SMXL5 and restore root growth. Therefore, the molecular functions of SMXL proteins are conserved, but their interaction networks are not. Moreover, the PpSMXLC/D clade positively regulates SL signal transduction in P. patens. Overall, our data reveal that SMXL proteins in moss mediate crosstalk between the SL and KL signaling pathways.


Subject(s)
Arabidopsis Proteins , Bryopsida , Gene Expression Regulation, Plant , Plant Proteins , Bryopsida/genetics , Bryopsida/growth & development , Bryopsida/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Signal Transduction , Phylogeny , Lactones/metabolism
16.
Plant Cell ; 36(3): 727-745, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38000897

ABSTRACT

Cytidine (C)-to-uridine (U) RNA editing in plant organelles relies on specific RNA-binding pentatricopeptide repeat (PPR) proteins. In the moss Physcomitrium patens, all such RNA editing factors feature a C-terminal DYW domain that acts as the cytidine deaminase for C-to-U conversion. PPR78 of Physcomitrium targets 2 mitochondrial editing sites, cox1eU755SL and rps14eU137SL. Remarkably, the latter is edited to highly variable degrees in different mosses. Here, we aimed to unravel the coevolution of PPR78 and its 2 target sites in mosses. Heterologous complementation in a Physcomitrium knockout line revealed that the variable editing of rps14eU137SL depends on the PPR arrays of different PPR78 orthologues but not their C-terminal domains. Intriguingly, PPR78 has remained conserved despite the simultaneous loss of editing at both known targets among Hypnales (feather mosses), suggesting it serves an additional function. Using a recently established RNA editing assay in Escherichia coli, we confirmed site-specific RNA editing by PPR78 in the bacterium and identified 4 additional off-targets in the bacterial transcriptome. Based on conservation profiles, we predicted ccmFNeU1465RC as a candidate editing target of PPR78 in moss mitochondrial transcriptomes. We confirmed editing at this site in several mosses and verified that PPR78 targets ccmFNeU1465RC in the bacterial editing system, explaining the conservation and functional adaptation of PPR78 during moss evolution.


Subject(s)
Bryophyta , Bryopsida , RNA Editing/genetics , Plant Proteins/metabolism , Bryophyta/metabolism , Bryopsida/genetics , Bryopsida/metabolism , Cytidine/genetics , Cytidine/metabolism , Uridine/genetics , Uridine/metabolism , RNA, Plant/metabolism
17.
Plant J ; 117(3): 909-923, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37953711

ABSTRACT

DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Bryopsida , Germination/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Plant Dormancy/genetics , Phylogeny , Spores, Fungal/metabolism , Bryopsida/genetics , Bryopsida/metabolism , Seeds/metabolism , Gene Expression Regulation, Plant
18.
Curr Biol ; 33(22): R1175-R1181, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37989091

ABSTRACT

Often overlooked, these small but otherwise brilliant plants began covering Earth's land masses more than 450 million years ago. They saw the dinosaurs come and go, and they saw us humans coming. Mosses, liverworts and hornworts comprise the bryophytes, the second largest monophyletic clade of land plants (embryophytes), after the vascular plants (tracheophytes). Like all embryophytes, mosses exhibit a haplodiplontic life cycle. This alternation of generations (originally termed Generationswechsel in German) between the haploid gametophyte and the diploid sporophyte implies that every plant genome encodes two distinct ontogenies, in contrast to animal genomes. Contrary to tracheophytes, the haploid gametophyte is the dominant generation in mosses. Haploidy of the major tissues facilitates gene-function annotation via reverse genetics. Nevertheless, the diploid sporophyte of mosses, the spore capsule, is a visible structure unlike the gametophyte of flowering plants, which is largely reduced and embedded in the sporophyte. Visibility of both generations on one plant facilitates the analysis of the alternation of generations, and in a broader sense evo-devo studies. Whereas the conservation of moss morphology over hundreds of millions of years suggests stasis, molecular data reveal fast evolving moss genomes, leaving an enigma for evolutionary biologists. Finally, the extraordinary resilience of mosses may provide lessons for current man-made climate change. In this Primer, we will highlight some of the peculiarities of mosses from historical observations to current genomic data, with an emphasis on their development, reproduction, evolution, biotic interactions, and potential for biotechnology. Mosses from three genera - the living fossil Takakia, the ecosystems engineer Sphagnum, and the model moss Physcomitrella - exemplify the scientific insights and the applications mosses have to offer.


Subject(s)
Bryophyta , Bryopsida , Humans , Animals , Bryophyta/genetics , Phylogeny , Ecosystem , Bryopsida/genetics , Plants/genetics
19.
Curr Opin Genet Dev ; 83: 102129, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864936

ABSTRACT

In species with separate sexes, the genome must produce two distinct developmental programs. Sexually dimorphic development may be controlled by either sex-limited loci or biased expression of loci transmitted through both sexes. Variation in the gene content of sex-limited chromosomes demonstrates that eukaryotic species differ markedly in the roles of these two mechanisms in governing sexual dimorphism. The bryophyte model systems Marchantia polymorpha and Ceratodon purpureus provide a particularly striking contrast. Although both species possess a haploid UV sex chromosome system, in which females carry a U chromosome and males carry a V, M. polymorpha relies on biased autosomal expression, while in C. purpureus, sex-linked genes drive dimorphism. Framing these genetic architectures as divergent outcomes of genetic conflict highlights comparative genomic analyses to better understand the evolution of sexual dimorphism.


Subject(s)
Bryophyta , Bryopsida , Marchantia , Bryopsida/genetics , Marchantia/genetics , Genome , Bryophyta/genetics , Sex Chromosomes/genetics
20.
New Phytol ; 240(5): 2085-2101, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37823324

ABSTRACT

Recent studies have shown that correlations between chromatin modifications and transcription vary among eukaryotes. This is the case for marked differences between the chromatin of the moss Physcomitrium patens and the liverwort Marchantia polymorpha. Mosses and liverworts diverged from hornworts, altogether forming the lineage of bryophytes that shared a common ancestor with land plants. We aimed to describe chromatin in hornworts to establish synapomorphies across bryophytes and approach a definition of the ancestral chromatin organization of land plants. We used genomic methods to define the 3D organization of chromatin and map the chromatin landscape of the model hornwort Anthoceros agrestis. We report that nearly half of the hornwort transposons were associated with facultative heterochromatin and euchromatin and formed the center of topologically associated domains delimited by protein coding genes. Transposons were scattered across autosomes, which contrasted with the dense compartments of constitutive heterochromatin surrounding the centromeres in flowering plants. Most of the features observed in hornworts are also present in liverworts or in mosses but are distinct from flowering plants. Hence, the ancestral genome of bryophytes was likely a patchwork of units of euchromatin interspersed within facultative and constitutive heterochromatin. We propose this genome organization was ancestral to land plants.


Subject(s)
Anthocerotophyta , Bryophyta , Bryopsida , Phylogeny , Chromatin , Heterochromatin/genetics , Euchromatin/genetics , Bryophyta/genetics , Anthocerotophyta/genetics , Bryopsida/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...